
INTERNATIONAL JOURNAL FOR RESEARCH & DEVELOPMENT IN

TECHNOLOGY
Volume-6, Issue-2 (Sep-16)

ISSN (O) :- 2349-3585

 All rights reserved by www.ijrdt.org

258

Ethernet Verification using UVM Methodology
__

P. Arun Babu
1
, K. Jaya Swaroop

2

2
Assistant Professor

1,2
Department of Ece, ,

1,2
 Gandhiji Institute of Science and Technology, India

Abstract – Verification of Gigabit Ethernet MAC (Media

Access Control) by using the most advanced verification

methodology i.e. UVM (Universal Verification Methodology)

has been presented in this paper. The main function of MAC

is to forward Ethernet frames to PHY through XGMII (10

Gigabit Media Independent Interface) and to receive the

frames from PHY to MAC through the same interface.

Verification of IP provides an elegant way to verify MAC

Characteristics such as frame transmission, frame reception

etc. Coverage driven verification is best achieved by UVM

with the use of factory and configuration mechanism,

coverage metrics and self checking which reduces the time

spent on verifying the design. A reusable testbench is

developed by using UVM methodology which has been used

to run different test scenarios on same TB environment.

Regression testing of the design is carried out for achieving

better coverage goal.

INTRODUCTION

In general, for verifying a SoC, firstly we need to verify the

standard bus interconnecting IP Cores present in the system.

The whole verification process of SoC consumes

approximately 70% of total design time. In this research work,

the problems taken care of are as follows:

1. Verification of Ethernet MAC which is an essential part of

Ethernet SoC verification.

2. Development of VIP for MAC unit.

3.Using that MAC VIP, Ethernet MAC has been verified and

coverage analysis has been performed.

This VIP is a reusable verification component and henceforth

it can be used to verify different SoC’s designed using

ETHERNET. The inbuilt tests employed in the ETHERNET

VIP have given a jumpstart to achieve the required coverage

goal which results in decrease of verification time. The UVM

was introduced in December 2009 by Accellerawhich uses

system Verilog as its base language. In recent years,

Verification has become a very challenging task as more and

more logic is being incorporated on a single chip. UVM

Improves productivity and ensures re-usability. Maintenance

of the verification components is much easier because the

components are standardized.

PROPOSED SYSTEM

10Gigabit Ethernet MAC implements a MAC controller

conforming to IEEE 802.3 specification. This proposed system

consists of two modules namely transmit module and receive

module. IEEE 802.3 data frame which consists of 7 different

fields. These fields are set together to form a single data frame

which illustrates the 7 fields: Preamble, Start-of-Frame

delimiter, Destination Address, Source Address, Length, Data,

and Frame Check Sequence.

A. Transmit Module

The transmit engine provides the interface between the client

and physical layer. Fig. 1 shows a block diagram of the

transmit engine with the interfaces to the client and physical

layer .

Fig.1. Block Diagram of ETHERNET Transmit Module

Paper Title:- Ethernet Verification using UVM Methodology

 ISSN:-2349-3585 |www.ijrdt.org
259

Fig.2. Block Diagram of ETHERNET Receive Module

B. Receive Module

The Receive Engine provides the interface between the

physical layer and client. Figure 2 shows a block diagram of

the receive engine with the interfaces to the client and physical

layer. The following Fig. describes the components of

ETHERNET MAC verification Architecture, which consists

of verification components like agent, driver etc.

Fig.3. ETHERNET VIP Architecture

Data item represents the input to the device under Verification

(DUV). Ethernet protocol specification gives clarity on valid

attributes and values for Ethernet data packet. Generally data

items are transmitted and generated to the DUV in a typical

test. A large number of meaningful tests can be created by

randomizing data item fields using SystemVerilog constraints

thus maximizing coverage.

class transmit_xtn extends

uvm_sequence_item;

rand bit [7:0] data [7:0];

// add all the inputs and outputs

rand addr_t xtn_type;

rand bit[63:0] xtn_delay;

constraint a{mod inside{[0:7]};}

// add constraints for remaining

//variables

// standard uvm methods:

`uvm_object_utils_begin(transmit_xtn)

`uvm_unpack_intN(data, UVM_ALL_ON)

// include uvm methods for all the variables

`uvm_object_utils_end

Listing 1. Transaction class

A driver is an active component that mimics logic that drives

the DUV. It Fetches data repeatedly from sequencer, drives

the DUT based on the protocol using the virtual interface

class mac_tx_driver extends uvm_driver

#(transmit_xtn);

// connect phase method

vif = m_cfg.vif;

//-------run() phase method -------//

task mac_tx_driver::run_phase(uvm_phase

phase);

//----- task send_to_dut() method --//

task

mac_tx_driver::send_to_dut(transmit_xtn

xtn);

`uvm_info("MAC_TX_DRIVER",$sformatf("prin

tingfromdriver \n %s",

xtn.sprint()),UVM_LOW)

// Add the transmit logic

endtask

// UVM report_phase

Listing 2. Driver class

Paper Title:- Ethernet Verification using UVM Methodology

 ISSN:-2349-3585 |www.ijrdt.org
260

Fig.4. Flow chart of MAC Coverage-Driven Verification

The items that are provided for execution to the driver is

controlled by the advanced stimulus generator called

sequencer. The sequences cannot directly access testbench

resources, which are available in the component hierarchy.

Using a sequencer, sequences can access testbench resources

as a key into the component hierarchy. Upon the request from

the driver, random data will be generated by the sequencer

which controls the distribution of randomized values by

allowing us to add constraints in the data item class .

class mac_tbase_seq extends uvm_sequence

#(transmit_xtn);

// Standard UVM Methods:

// Standard UVM Methods:

//------- task body method --------//

task mac_tx_xtns::body();

begin

req=transmit_xtn::type_id::create("

req");

strat_item(req);

// add asserts

assert(req.randomize() with {data[2]

inside {[20:0]}; en==1'b1; val==1'b1;

avail==1'b1;});

finish_item(req);

end

endtask

Listing 3. Sequence class

The monitor extracts signal information from the bus and

translates it into transactions. Monitor is connected to other

components via standard TLM interfaces like Analysis port

and export.

To create a Monitor

1. Monitor class has been derived from the base class

known as uvm_monitor

2. Added UVM infrastructure macros for class properties for

the implementation of utilities for printing & copying,

3. Virtual interface has been declared in the monitor part for

the connection between monitor and DUT

4. Obtained the data item from interface to send it to

scoreboard.

class mac_tx_monitor extends uvm_monitor;

// Analysis TLM port to connect the monitor to the

scoreboard

uvm_analysis_port #(transmit_xtn)

monitor_port;

// add Standard UVM Methods:

//------- build() phase method --//

super.build_phase(phase);

vif = m_cfg.vif;

//------ run() phase method -------//

task

mac_tx_monitor::run_phase(uvm_phase

phase);

forever

// Call collect data task

collect_data();

endtask

// Collect Reference Data from DUV IF

// add logic here

//Sending Receive transaction to SB

monitor_port.write(data_sent);

// UVM reort_phase

Listing 4. Monitor class

In an agent there are three specific components viz: sequencer,

driver, and monitor. They can be reused independently. The

driver, sequencer, and monitor are encapsulated by the agent.

Verification environment can contain multiple number of

agents. ETHERNET MAC has two agents: transmit and

receive agent.

class mac_tx_agent extends uvm_agent;

//------- build() phase method ----//

super.build_phase(phase);

//------ connect() phase method --//

if(m_cfg.is_active==UVM_ACTIVE)

drvh.seq_item_port.connect(m_sequencer.se

q_item_export);

end

Listing 5. Agent class

A scoreboard is an analysis component that checks whether

the DUT is behaving properly. Its function is to verify the

proper action of the design at functional level by comparing

Paper Title:- Ethernet Verification using UVM Methodology

 ISSN:-2349-3585 |www.ijrdt.org
261

the predicted output from reference model with the actual

output from receiver .

class mac_scoreboard extends

uvm_scoreboard;

covergroup mac_fcov1;

option.per_instance=1;

cover_point_txmod: coverpoint

transmit_cov_data.mod

{option.auto_bin_max=8;}

// add cover points for all the data

//members

}

transmit_FC:cross txdata,txmod,tvalid;

endgroup:mac_fcov1

mac_fcov1=new();

//add Receive Operation - Functional

//Coverage

// Standard UVM Methods:

// ---- mac_transmit() method --------//

function void

mac_scoreboard::mac_transmit(transmit_xtn

tr);

if(txd_fifo_status ==0 && tr.full==1)

`uvm_info("MAC transmit function",

$psprintf("fifo_data=%b",fifo_data),

UVM_LOW)

begin

fifo_en=tr.val;

fifo_data = tr.data;

end

// add logic here

endfunction : mac_transmit

// add mac_receive() method

//--------run() phase ---------//

// explore the check_data

$cast(ref_xtn , re.clone());

if(mac_receive(ref_xtn))

begin

//compare

if(re.compare(ref_xtn))

begin

`uvm_info(get_type_name(),

$sformatf("Scoreboard - Data Match

successful"), UVM_MEDIUM)

xtns_compared++ ;

end

else

`uvm_error(get_type_name(), $sformatf("\n

Scoreboard Error [Data Mismatch]: \n

Received Transaction:\n %s \n Expected

Transaction: \n %s", re.sprint(),

ref_xtn.sprint()))

end

else

uvm_report_info(get_type_name(),

$psprintf("No Data transmitted in the data =%b \n %s",re.data,

re.sprint()));

Listing 6. Scoreboard class

 Coverage Driven Verification of Ethernet. The environment

acts as the top-level component for all the verification

components. Environment, in addition to the agents, consists

of scoreboard, coverage collectors and other analysis

components.

class mac_env_config extends uvm_object;

bit has_functional_coverage = 0;

bit has_tagent_functional_coverage = 0;

bit has_scoreboard = 1;

bit has_tagent = 1;

bit has_ragent = 1;

//bit has_virtual_sequencer = 1;

mac_tx_agent_config m_tx_agent_cfg;

mac_rx_agent_config m_rx_agent_cfg;

int no_of_duts = 4;

// Standard UVM Methods:

Listing 7. Environment class

Interface is a static component that encapsulates

communication between the hardware blocks. It provides a

mechanism to group together multiple signals into a single

unit that can be passed around the design hierarchy thus

reducing the amount of code and promotes reuse. It is easy to

maintain since signals can be added or removed easily.

Interface ports work exactly like the module ports. When the

Paper Title:- Ethernet Verification using UVM Methodology

 ISSN:-2349-3585 |www.ijrdt.org
262

interface is instantiated, the connection of the port list can be

done externally either by using order based or name based

mapping . In the port list, only those signals are mentioned

whose direction is same for both DUT and testbench like

clock signal. But for the rest of the signals, instead of port list

we need to specify the directions with the help of a modport.

Based on the declared directions, Modport restricts the

interface access within a module. The function of the clocking

block is to identify the clock signals and to capture the

synchronization and timing requirements of the modeled

blocks. Signals synchronous to a particular clock are

assembled by a clocking block thus making their timing

explicit and avoiding race around condition. With the help of

the clocking block, testbench drives the signals on time.

Interface can contain more than one clocking block depending

on the environment. Set up and hold time of the DUV can also

be modeled.

interface mac_if(input bit clock);

// transmiter driver CB

clocking tdr_cb @ (posedge clock);

default input #1 output #1;

output tx_data, tx_val,tx_sop,

tx_eop,tx_mod;

input tx_full;

endclocking

// add clocking block for the transmitmonitor , receive

driver and receive monitor

//transmitter driver modport

modport tdr_mp(clocking tdr_cb);

// add mod ports for remaining components

Endinterface

Listing 8. Interface and Clocking block

Since Interface is static in nature and TB environment is

dynamic, it is not possible to instantiate static interface in

dynamic class objects. Virtual interface instance is created by

using keyword “virtual”. By means of virtual interface drivers

and monitors can be created and deleted dynamically during

run time. For achieving coverage driven verification

(CDV).UVM is always the best choice.

C. Test Cases

To check the functionality of the ETHERNET according to the

specification the following test cases have been written:

Receive Enable

Receive available

Valid data (Tx and Rx)

Start of packet (Tx and Rx)

End of packet (Tx and Rx)

Modulus length (Tx and Rx)

Packets data(Tx and Rx)

Receive error

Transmit full

COVERAGE REPORTS AND RESULTS

Verification results of Transmit Agent and the Receive Agent

of the UVM Environment are presented above tables.

According to Test Plan, the test cases are verified by

developing the Verification IP for Ethernet Protocol. The Test

Cases are written in the form of sequences in the Sequencer

using System Verilog UVM methodology. The sequencer

drives the sequences to the driver and thereby to Score Board.

In the scoreboard, the actual output is compared with the

expected one. If the obtained output matches with the

expected result then we conclude that the verification is

completed successfully. By using Questa simulation software,

the Verification of Ethernet components such as transmit

Agent and receive agent are done and the log files for the test

cases are generated with Coverage report. Table II shows the

coverage of the whole environment for code and functional

coverage. 92.5% overall coverage has been obtained. It is not

100% as there is unreachable or unobservable code like testing

logics, redundant code and functionality which is not under

verification. Fig.5. shows Ethernet verification in uvm The

Functional coverage has been attained by developing

sufficient assertions and creating Cover groups, cover points

and bins. 100% assertion coverage has been obtained the

functional coverage and the code coverage of transmitter and

receiver modules respectively. Tx coverage is 77.58% and Rx

coverage is 77.71%. The cover group coverage is not 100% as

all the registered address is not required to be checked which

results in 89.23% coverage.

Paper Title:- Ethernet Verification using UVM Methodology

 ISSN:-2349-3585 |www.ijrdt.org
263

TABLE I. COVERAGE DETAILS FOR TRANSMIT

PACKET COVER

GROUP

TABLE II. COVERAGE DETAILS FOR RECEIVE

PACKET COVER GROUP

Fig.5. Ethernet verification in UVM

CONCLUSION

The specifications of MAC are verified successfully using

UVM methodology on QuestaSim simulator. Functional

coverage i.e. measure of implementation of design is carried

out and 92.5% of coverage is extracted. The coverage can be

improved by modifying the code according to the need. The

scoreboard successfully compares the result of every

transaction generated.

ACKNOWLEDGMENT

I express my sincere gratitude to Mr. K. Jaya Swaroop,

Department of ECE , GIST college, India and also thanks to

for continuous guidance and other Professors of Department

of VLSI Design and Embedded Systems, GIST, India for

extending their help & support in giving technical ideas about

the paper without which I would not come up with this paper

REFERENCES

[1]. P.Chauhan, E.M. Clarke, Y.Lu and DongWang,

“Verifying IPCore based System-On-Chip Designs”,

Carnegie Mellon University Research Showcase.

[2]. Samanta, P, Chauhan, D, Deb, S, Gupta, P.K, “UVM

based STBUS Verification IP for Verifying SOC

Architectures”, Proc IEEE VLSI Design and Test, 18th

International Symposium, doi.

10.1109/ISVDAT.2014.6881037, Coimbatore, July

2014.

[3]. Bhaumik Vaidya, Nayan Pithadiya, “An Introduction to

Universal Verification Methodology”, Journal of

information, knowledge & Research in Electronics and

Communication Engineering, vol 2, Nov- 12 to Oct-13.

[4]. Assaf, M.H, Arima ; Das, S.R. ; Hernias, W, Petriu,

E.M, “Verification of Ethernet IP Core MAC Design

Using Deterministic Test Methodology”, IEEE

International instrumentation and Mesurements

TechnologyConference,

doi.10.1109/IMTC.2008.4547312, victoria, May 2008.

[5]. Tonfat, J, Reis, R, “Design and Verification of a layer-2

Ethernet MAC classification Engine for a gGigabit

Ethernet Switch”, Proc IEEE Electronics, Circuits, and

Systems doi. 10.1109/ICECS.2010.5724475, Athens,

Dec 2010.

[6]. Frazier,H. “The 802.3z gigabit Ethernet Standard”, Proc

IEEE J, doi10.1109/65.690946, vol-12, May-June 1998.

[7]. MV Lau,, S. Shieh, Pei-Feng Wang, B. Smith, D. Lee,

J. Chao, B. Shung, and Cheng-Chung Shih, "Gigabit

ethernet switches using a shared buffer

architecture,"Communications Magazine, IEEE, vol.

41, no. 12, pp. 76 - 84, dec. 2003.

Paper Title:- Ethernet Verification using UVM Methodology

 ISSN:-2349-3585 |www.ijrdt.org
264

[8]. Bergeron J, “Writing Test benches Using

SystemVerilog”,Springer, ISBN-10: 0-387-29221-7,

Business Media. 2006.

[9]. www.accellera.org/

[10]. www.testbench.in/ [online].

