
INTERNATIONAL JOURNAL FOR RESEARCH & DEVELOPMENT IN

TECHNOLOGY
Volume-6, Issue-4 (Nov-16)

ISSN (O) :- 2349-3585

 All rights reserved by www.ijrdt.org

184

Review on Execution Time of Sorting Algorithms

A Comparative Study
__

Jyoti Mundra
1

1
Assistant Professor,Dept. of Computer Sc. Engineering , Mewar University , Chittorgarh, India

ABSTRACT: Sorting is an important data structure in many

real life applications. A number of sorting algorithms are in

existence till date. In this paper the author have tried to

improve upon execution time of the Bubble Sort algorithm

by implementing the algorithm using a new algorithm. An

extensive analysis has been done by author on the new

algorithm and the algorithm has been compared with the

traditional methods of ―Bubble Sort, Selection Sort,

Insertion Sort, Merge Sort, Quick Sort. Observations have

been obtained on comparing this new approach with the

existing approaches of All Sorts. All algorithms were tested

on random data of various ranges from small to large. It has

been observed that the new approach has given efficient

results in terms of execution time. Hence we have reached to

the conclusion through the experimental observations that

the new algorithm given in this paper is better than Selection

Sort, Insertion Sort, Merge Sort, and Bubble Sort except

Quick Sort for larger inputs.

Keywords: Bubble Sort; Insertion sort; Quick Sort; Merge

Sort; Optimized Bubble Sorting; CPU Time.

INTRODUCTION

There are two basic categories of sorting methods [1]: A.

INTERNAL SORTING: If all the data that is to be sorted can

be adjusted at a time in main memory, then internal sorting

methods are used. The various internal sorting methods are:

Bubble sort, Insertion sort, Quick Sort, Merge Sort, Heap Sort,

and Radix Sort [1]. B. EXTERNAL SORTING: When the

data to be sorted can’t be accommodated in the memory at the

time and some has to be kept in auxiliary memory (hard disk,

floppy, tape etc), then external sorting method are used. The

most common used external sorting method is: Merge Sort [1]

 As stated in [2], sorting has been considered as a fundamental

problem in the study of algorithms, that due to many reasons:

• The need to sort information is inherent in many

applications.

• Algorithms often use sorting as a key subroutine.

 • In algorithm design there are many essential techniques

represented in the body of sorting algorithms.

• Many engineering issues come to the fore when

implementing sorting algorithms. Efficient sorting is important

to optimize the use of other algorithms that require sorted lists

to work correctly; it is also often in producing human-readable

output. Formally, the output should satisfy two major

conditions[2]:

 • The output is in non-decreasing order.

 • The output is a permutation, or reordering, of the input.

Since the early beginning of computing, the sorting problem

has attracted many researchers, perhaps due to the complexity

of solving it efficiently. Bubble sort was analyzed as early as

1956 [5]. Many researchers considered sorting as a solved

problem. Even so, useful new sorting algorithms are still being

invented, for example, library sort was first published in 2004.

Sorting algorithms are prevalent in introductory computer

science classes, where the abundance of algorithms for the

problem provides a gentle introduction to a variety of core

algorithm concepts [1, 13].

In [4], they classified sorting algorithms by:

• Execution time: Some algorithms take less CPU time and

some takes More CPU time.

• Number of swaps (for in-place algorithms).

• Stability: stable sorting algorithms maintain the relative

order of records with equal keys (values). Ex. when there are

two records R and S with the same key and with R appearing

before S in the original list, R will appear before S in the

sorted list.

 • Usage of memory and other computer resources. Some

sorting algorithms are “in place”, such that only O(1) or O(log

Paper Title:- Review on Execution Time of Sorting Algorithms A Comparative Study

 ISSN:-2349-3585 |www.ijrdt.org
185

n) memory is needed beyond the items being sorted, while

others need to create auxiliary locations for data to be

temporarily stored.

• Whether or not they are a comparison sort. A comparison

sort examines the data only by comparing two elements with a

comparison operator. In this paper we have proposed a slight

variation to Bubble sort by introducing a new approach for

implementing the bubble sort. We wanted to design a stable

sorting algorithm which could sort Maximum Number of

elements in every pass.

PERFORMANCE IN AVERAGE CASE BETWEEN

SORTING ALGORITHMS

Insertion Sort

It is an efficient algorithm for sorting a small number

of elements. The insertion sort works just like its name

suggests, inserts each item into its proper place in the final

list. Sorting a hand of playing card is one of the real time

examples of insertion sort. Insertion sort can take

different amount of time to sort two input sequences

of the same size depending upon how nearly they already

sorted. It sort small array fast but big array very slow[4].

TABLE 1: Execution Time for Insertion Sort

Number of elements Running time (ms)

10000 1605

20000 3678

30000 6125

Selection Sort

It is among the most intuitive of all sorts. The basic rule of

selection sort is to find out the smallest elements in each

pass and placed it in proper location. These steps are

repeated until the list is sorted. This is the simplest method

of sorting. In this method, to sort the data in ascending

order, the 0th element is compared with all the elements. If

0 th element is greater than smallest element than

interchanged. So after the first pass, the smallest element is

placed at the 0th position. The same procedure is repeated

for 1th element and so on until the list is sorted [4].

TABLE 2: Execution Time for Selection Sort

Number of elements Running time (ms)

10000 2227

20000 5058

30000 8254

Merge Sort

Merging means combining two sorted list into one sorted

list. The unsorted list is first divide in two half. Each half is

again divided into two. This is continued until we get

individual numbers. Then pairs of number are combined

(merged) into sort list of two numbers. Pairs of these lists of

four numbers are merged into sorted list of eight numbers.

This is continued until the one fully sorted list is obtained

[4].

TABLE 3: Execution Time for Merge Sort

Number of elements Running time (ms)

10000 728

20000 1509

30000 2272

A. Quick Sort

 in general, quick sort can sort a list of data elements

significantly faster than any of the common sorting

algorithms. This algorithm is based on the fact that it is

faster and easier to sort two small arrays than one larger

one. Quick sort is based on divide and conquer method.

Quick sort is also known as partition-exchange sort[4]. One

of the elements is selected as the partition element known

as pivot element. The remaining items are compared to it

and a series of exchanges is performed. When the series of

exchanges is done, the original sequence has been

partitioned into three sub sequences.

1. All items less than the pivot element

2. The pivot element in its final place

3. All items greater than the pivot element

At this stage, step 2 is completed and quick sort will be

applied recursively to steps 1 and 3 The sequence is sorted

when the recursion terminates.

TABLE 4: Execution Time for Quick Sort

Paper Title:- Review on Execution Time of Sorting Algorithms A Comparative Study

 ISSN:-2349-3585 |www.ijrdt.org
186

Number of elements Running time (ms)

10000 489

20000 1084

30000 1648

A. Bubble sort

Because of bubble sort's simplicity, it is one of the oldest

sorts known to man. It based on the property of a sorted list

that any two adjacent elements are in sorted order. In a

typical iteration of bubble sort each adjacent pair of

elements is compared, starting with the first two elements,

then the second and the third elements, and all the way to

the final two elements. Each time two elements are

compared, if they are already in sorted order, nothing is

done to them and the next pair of elements is compared. In

the case where the two elements are not in sorted order, the

two elements are swapped, putting them in order [5].

TABLE 5: Execution Time for Bubble Sort

Number of elements Running time (ms)

10000 1133

20000 3103

30000 5730

PROPOSED OPTIMIZED BUBBLE SORT

ALGORITHM

In this sorting algorithm, the sorting is done in two phases:

1) Phase 1: initially Leftmost bound is set at 0th position and

Rightmost bound is set at last position i.e. Length of array

- 1. Leftmost and rightmost elements are compared if

leftmost is larger than rightmost then swapped .then

leftmost bound get increased and right most bound get

decreased .The main loop gets repeated “n/2” times

provided “n” is the Length of array. After every iteration

the distance between Leftmost bound and Rightmost

bound goes on decreasing. In this array get optimized[14]

2) Phase 2: In this phase bubble sort algorithm is applied

from left to right up to middle element and from right to

left up to middle element. After these arrays got

sorted[14].

1) Algorithm

proposed_Bubble_Sort (A [] , N)

 Step1: Set Mid=N/2, S=0

Step 2 : Repeat For J= 0 to Mid-1 Begin

Step 3: If (A [J] >A [N- J -1])

 Swap (A [J] , A [N-J – 1])

 End For

Step 4: Repeat For P = 0 to Mid-1

 Begin

Step 5 : Repeat For J = 0 to Mid

 Begin

 Step 6: If (A [J] > A [J +1])

 Swap (A [J] , A [J +1]) S=1

 If (A [N-J -1] < A [N-J -2])

Swap (A [N-J -1] , A [N-J -2])

 S=1

End For

IF (S=0)

Break

Set S=0

 End For

 Step 7: Exit

TABLE 6: Execution Time for Proposed Optimized Bubble

Sort

Number of elements Running time (ms)

10000 240.0

20000 960

30000 2150

COMPARATIVE STUDY AND DISCUSSION

All the six sorting algorithms (Selection Sort, Insertion sort,

Merge sort, Quick sort, Bubble Sort and proposed optimized

bubble sort) were implemented it in C language on GCC

complier on Linux operating system implemented in C++

programming languages and tested for the random sequence

input of length 10000, 20000, 30000. To calculate the

execution time of both algorithms, clock () function is used.

Paper Title:- Review on Execution Time of Sorting Algorithms A Comparative Study

 ISSN:-2349-3585 |www.ijrdt.org
187

The Plot of length of input and CPU time taken (ms) is shown

in figure1. Result shows that for small input the performance

for the six techniques is all most nearest, but for the large

input Quick sort is the fastest and the selection sort the

slowest. Proposed optimized bubble sort is faster than other

sorting algorithms except Quick Sort for larger input length

(more than 30000).

Fig.1 Graph of Number of Input vs CPU time(in sec)

CONCLUSION

In this paper, efforts are made to point out some deficiencies

in earlier work related to all five traditional sorting algorithms

(Selection Sort, Insertion sort, Merge sort, Quick sort, Bubble

Sort. By going through all the experimental results and their

analysis it is concluded that the proposed new algorithm is

very efficient than existing bubble sort, Selection Sort,

Insertion sort, Merge sort, Quick sort, algorithms .It is

reducing the Execution time. The benefits of this algorithm

can be used in various areas like sorting of contact lists, Web

Browsers, etc. One of the advantages is that it is a stable sort

which can be used in all applications where similar valued

keys are used in databases, same last name but different first

name of people.

REFERENCES

[1]. Kruse R., and Ryba A., Data Structures and Program

Design in C++, Prentice Hall, 1999.

[2]. Cormen T., Leiserson C., Rivest R., and Stein C.,

Introduction to Algorithms, McGraw Hill,2001.

[3]. Knuth, D. The Art of Computer Programming, Vol. 3:

Sorting and Searching, Third edition. Addison- Wesley,

1997. ISBN 0-201-89685-0. pp. 106-110 of section.

[4]. Aho A., Hopcroft J., and Ullman J., The Designand

Analysis of Computer Algorithms, Addison Wesley,

1974.

[5]. Astrachanm O., Bubble Sort: An Archaeological

Algorithmic Analysis, Duk University, 2003.

[6]. D.Sharma,V.Thapar,R.A.Ammar,S.Rajasekaran,M.Ah

me d, “Efficient sorting algorithms for the cell

broadband engine,”Computers and

Communications,2008.ISCC 2008.IEEE Symposium.

[7]. Jehad Alnihoud and Rami Mansi, “An Enhancement of

Major Sorting Algorithms,” The International Arab

Journal of Information Technology, Vol.7, No. 1,

January 2010.

[8]. Sultanullah Jadoon, Salman faiz Solehria, Prof. Dr.

Salim Ur Rehman, Prof. Hamid Jan, “Design and

Analysis of Optimized Selection Sort Algorithm,”

International Journal of Electric and computer sciences

IJECS-IJENS VOL. 11, No. 01 pp. 16- 22.

[9]. Dhwaneel Trivedi, Prathmesh Trivedi, Suraj

Singh,”Min-Max Select Bubble Sorting Algorithm”

,International Journal of Applied Information Systems

(IJAIS) – ISSN : 2249-0868 Foundation of Computer

Science FCS, New York, USA International

Conference & workshop on Advanced Computing 2013

(ICWAC 2013) – www.ijais.org .

[10]. Vipul Sharma “A New Approach to Improve Worst

Case Efficiency of Bubble Sort” International Research

Journal of Computer Science (IRJCS) ISSN: 2393-9842

Issue 6, Volume 2 (June 2015) www.irjcs.com.

[11]. Ramesh M. Patelia, Shilpan D. Vyas, Parina S. Vyas

"An Analysis and Design of Optimized Bubble Sort

Algorithm".IJRIT International Journal of Research in

Information Technology, Volume 3, Issue 1, January

2015, Pg. 65-68 [12] Data Structures by Seymour

Lipschutz, Schaum’s outlines, The MacGraw Hill

Companies.

[12]. Levitin A., “Introduction to the Design & Analysis of

Algorithms”, 2nd Ed. Pearson Educational, 2007.

[13]. Arora Nitin, Kumar vivek and Kumar Suresh. “A Novel

Sorting Algorithm and Comparison with Bubble Sort

0

5000

10000

Ti
m

e
 (

in
 …

No of Elements

Chart Title

bubble Sort

Selection Sort

Insertion Sort

Quick Sort

http://www.irjcs.com/

Paper Title:- Review on Execution Time of Sorting Algorithms A Comparative Study

 ISSN:-2349-3585 |www.ijrdt.org
188

and Insertion Sort,” International Journal of Computer

Applications (0975-8887) vol. 45, No. 1, May 2012.

[14]. Jyoti Mundra, Mr. B. L. Pal.” Minimizing Execution

Time of Bubble Sort Algorithm”, International Journal

of Computer Science and Mobile Computing, Vol.4

Issue.9, September- 2015, pg. 173-181

